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Time-interval analysis of β decay 

 

V. Horvat and J. C. Hardy 

 

Work on the event analysis of β decay [1] continued and resulted in the development of a novel 

method of beta-decay time-interval analysis that produces highly accurate results for the half-life, decay 

rate, and background rate, regardless of the event rate, nature of the detection-system dead time, and/or 

extent of the dead time, while being conceptually simple, free of notable numerical challenges, fast and 

exact. The method applies when event arrival times are measured and recorded individually, which can be 

accomplished easily using existing electronic modules, such as time-to-digital converter (TDC) or 

waveform digitizer (WFD). These modules are controlled by means of a personal computer, using 

customized software developed in our lab. 

This report describes the principles behind the time-interval analysis method and demonstrates its 

robustness based on an example involving simulated events. 

The half-life of a β-decaying nuclide is determined from the known time-dependence of the event 

rate expected under ideal conditions (i.e., in the absence of the detection system’s dead time), which is 

described by a function we denoted by ρ and call the ideal rate function. For example, in the case of a 

single-component decay in the presence of a constant background B,  

 

 ρ = A exp(-λt) + B ,        (1) 

 

where A is the initial ideal rate (at time t = 0) in the absence of background, and 

 

 λ = ln(2) / T1/2         (2) 

 

is the nuclide-specific decay constant, which is related to the nuclide’s half-life T1/2. Here it is assumed 

that the system’s detection efficiency does not depend on ρ.  

The time-interval analysis method was derived based on Eqs. (9) and (10) of Ref. [1], which 

express the probability dp that an event occurring at time zero will be followed by the next event in the 

time interval [t , t + dt), provided that a known detection-system dead time td follows the event detected at 

time zero:  

 

 dp = Θ(t - td) exp[- <ρ>d (t - td)] ρt dt ,      (3) 

 

where  
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ρt is the value of ρ at time t; and Θ(t - td) is the Heaviside (unit-step) function. The Heaviside function 

reflects the fact that the probability of detecting an event in the time interval [0, td) equals zero. 
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Consequently, dp on the left-hand side of Eq. (3) is also the probability of detecting an event in time 

interval [t, t + dt) following the detection of no events in the time interval [td, t). In fact, replacing td in 

Eqs. (3) and (4) with t – tl, where tl is the detection-system live time preceding the detection of the event 

at time t, yields 

 

dp = Θ(tl) exp[- <ρ>l tl] ρt dt ,        (5) 

 

where  
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The key element in the time-interval analysis method, which ensures that the method is exact 

(i.e., not involving any approximations in its concept), is to know td exactly. Unfortunately, in reality, the 

actual value of td cannot be determined exactly for each measured event. However, if the timing of each 

measured event is recorded, it is possible to impose, by means of software, a known fixed extendable 

dead time τe that follows each measured event. The measured (primary) events that are not eliminated by 

the imposed dead time can then be used to form a secondary event set. If τe is set to be equal to (or greater 

than) the largest actual dead time td in the original (primary) event set, then the actual dead time td, as well 

as the actual live time tl, for each event in the secondary set can be determined exactly. Consequently, an 

exact analysis can be performed on the secondary event set, even though the nature and/or the extent of 

the detection-system dead time may not be known exactly for each event in the primary set. 

To ensure that the dead time τe imposed on the events recorded in a real measurement is 

sufficiently large but not too large (to avoid removing too many events), analysis of the primary-event set 

must be performed several times, each time with a different value of τe. By plotting the results of the 

analyses as a function of τe, it should be straight-forward to determine the best value of τe (here denoted 

by τm), below which the results show a trend, and above which the results vary randomly. The extent of 

the random variations for τe > τm must be smaller than those normally expected based on the number of 

events analyzed. This is because the secondary event sets obtained from the same primary event set by 

imposing different values of τe are not statistically independent. 

The goal of data analysis is to determine the best estimates (or most-likely values) of the 

parameters of ρ and their uncertainties. In the time-interval analysis method, as applied to a single 

measurement of beta decay that started at time t = 0, this is accomplished by evaluating quantity Z, which 

is proportional to the probability of obtaining, in a repeated measurement under the same conditions, the 

actual time sequence of events that survived after the dead time τm had been imposed.  Then 
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where 
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N is the total number of such events; ti (i = 1, 2, …, N) is the instant when the i-th event occurred; tl(i) is 

the detection-system live time period preceding event i; tf is the instant when the measurement ended; ρi is 

the value of the ideal event rate at time ti; and  

 

 tz = min(tf , tN + τm) .        (9) 

 

The exponential function in Eq. (7) represents the probability of measuring no events in the time 

interval (tN , tf).  

Finally, the parameters of ρ [i.e., A, T1/2, and B, if ρ is assumed to be given by Eqs.(1) and (2)] are 

varied iteratively in order to find the set of their most-likely values, which are taken to be those that 

maximize the value of Z. For practical reasons, this is done by minimizing the value of quantity E given 

by 

 

 ZE ln2  .         (10) 

 

If several measurements are analyzed simultaneously so that, for example, a common value of T1/2 

can be determined, the parameters of ρ are varied iteratively in order to maximize the product of Z-values 

or to minimize the sum of E-values obtained for each measurement. The uncertainty of any parameter of ρ 

is obtained as the square root of the corresponding diagonal element of the inverse of the Hessian matrix 

of E.  

Accuracy and statistical consistency of the results can be best assessed by applying the time-

interval analysis method to simulated event sets that have been constructed based on imposed values for 

the parameters of ρ. The simulated event sets used to test the time-interval analysis method were made to 

mimic those obtained in the actual measurements of the 26mAl half-life, which used the K-500 

superconducting cyclotron, the Momentum Achromatic Recoil Separator, and the Precision On-Line 

Decay Facility at Texas A&M University [2]. Specifically, it was assumed that ρ is given by Eqs. (1) and 

(2), with B =1 s-1 and T1/2 = 6.3452 s [3], while A ranged from 102 s-1 to 105 s-1. The original sets of 

simulated events were made assuming that there is no dead time, but a dead time per event (τm) of up to 

512 µs, as needed, was imposed on the data by the software before the beginning of the time-interval 

analysis. The total number of events in each primary set was about 60 million, which corresponds to a 

statistical precision slightly above 0.01%. The number of individual decay measurements in each 

simulated event set ranged from 66 at A = 105 s-1 to 57,693 at A = 102 s-1. Each simulated measurement 

was assumed to last 125 s, which corresponds to about 20 half-lives. 
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FIG. 1. Results of the time-interval analysis presented in the form of the combined decay spectrum and the 
corresponding spectrum of the residuals for the case of a simulated ideal event set obtained assuming A = 105 
s-1, B = 1 s-1, and T1/2 = 6.3452 s, on which an extendable dead time of 64 µs was imposed. In the decay 
spectrum, the data points represent the number of events in each (0.25 s wide) channel, the thick solid (red) 
lines represent the expected values calculated based on the best estimates of the ideal rate parameters obtained 
in the analysis (and on the imposed dead time). Likewise, the thick dashed (gray) lines represent the 
background, while the thin solid (blue) lines represent the decay component. The thin dashed (black) lines 
represent the expected results under ideal conditions (i.e., no dead time). The residuals are shown as a function 
of time in a separate graph located above the corresponding graph of the decay spectrum, while their 
histograms are shown as inserts in the decay spectrum graph, using grey bars. Each histogram of the residuals 
was fitted by a Gaussian function. The best fit is shown by the solid (red) line and the best-fit standard 
deviation (σ) is indicated in the graph 

In order to distinguish between the values of B, T1/2, and A, on which the event simulation was 

based, and the corresponding values obtained in the analysis of the simulated event sets, lowercase 

symbols a, t1/2, and b will be used for the latter.  

To assess the meaningfulness and quality of results from the time-interval analysis method, a 

500-channel decay spectrum was constructed for each simulated measurement, along with the 

corresponding spectrum of predicted values. These predicted values were obtained for each channel by 

integration of the most-likely ideal event rate ρ (as obtained in the analysis) over time, from the channel 

lower limit to the channel upper limit, while skipping the time intervals within the channel that were 

covered by the dead time. The corresponding channel contents of the individual spectra from the same set 

were then combined to construct a single spectrum in order to present statistically more meaningful 

results and to amplify and expose any systematic errors that might have occurred in the data analysis. An 

example of a spectrum and the results obtained this way are shown in Fig. 1.  

Fig. 1 demonstrates that the time-interval analysis method produces accurate results, in particular 
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for t1/2, even in the case in which the decay spectrum is drastically distorted due to the presence of an 

extendable dead time. Note that the example shown in Fig. 1 is rather extreme and was chosen only to 

demonstrate the robustness of the time-interval analysis method. 
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